Retinoid X receptor and c-cerbA/thyroid hormone receptor regulate erythroid cell growth and differentiation.
نویسندگان
چکیده
Nuclear receptors are important regulators of erythroid cell development. Here we investigated the impact of retinoid X receptor (RXR), retinoic acid receptor (RAR), and of the c-erbA/thyroid hormone (T3) receptor (c-erbA/TR) on growth and differentiation of erythroid cells using an in vitro culture system of stem cell factor-dependent erythroid progenitors. RXR, RAR, and c-erbA/TR-specific ligands were found to induce erythroid-specific gene expression and to accelerate erythroid differentiation in culture, with T3 being most effective. Furthermore, while ligand-activated c-erbA/TR accelerated differentiation, unliganded c-erbA/TR effectively blocked differentiation and supported sustained progenitor growth in culture. Thus, c-erbA/TR appears to act as a binary switch affecting erythroid cell fate: unliganded c-erbA/TR supports growth while ligand-activated c-erbA/TR induces differentiation. Additionally, to determine the impact of RXR for erythroid cell development, dominant interfering mutant RXRs, lacking the transcriptional activator functions AF-1 and AF-2, or AF-2 only, or the entire DNA-binding domain, were introduced into erythroid progenitor cells via recombinant retrovirus vectors and analyzed for RXR-specific effects. It was found that expression of wild-type RXR and of the RXR mutants devoid of AF-1 and/or AF-2 supported a transient outgrowth of erythroid cells. In marked contrast, expression of the dominant interfering deltaDNA-binding domain RXR, containing a deletion of the entire DNA-binding domain, was incompatible with erythroid cell growth in vitro, suggesting a pivotal role of RXR for erythroid cell development.
منابع مشابه
The thyroid hormone receptor functions as a ligand-operated developmental switch between proliferation and differentiation of erythroid progenitors.
The avian erythroblastosis virus (AEV) oncoprotein v-ErbA represents a mutated, oncogenic thyroid hormone receptor alpha (c-ErbA/ TRalpha). v-ErbA cooperates with the stem cell factor-activated, endogenous receptor tyrosine kinase c-Kit to induce self-renewal and to arrest differentiation of primary avian erythroblasts, the AEV transformation target cells. In this cooperation, v-ErbA substitute...
متن کاملMolecular Functions of Thyroid Hormones and Their Clinical Significance in Liver-Related Diseases
Thyroid hormones (THs) are potent mediators of several physiological processes, including embryonic development, cellular differentiation, metabolism, and cell growth. Triiodothyronine (T3) is the most biologically active TH form. Thyroid hormone receptors (TRs) belong to the nuclear receptor superfamily and mediate the biological functions of T3 via transcriptional regulation. TRs generally fo...
متن کاملActive repression by unliganded retinoid receptors in development
The retinoid receptors have major roles throughout development, even in the absence of ligand. Here, we summarize an emerging theme whereby gene repression, mediated by unliganded retinoid receptors, can dictate cell fate. In addition to activating transcription, retinoid receptors actively repress gene transcription by recruiting cofactors that promote chromatin compaction. Two developmental p...
متن کاملRetinoid X receptor (gamma) is necessary to establish the S-opsin gradient in cone photoreceptors of the developing mouse retina.
PURPOSE The retinoid X receptors (RXRs) are members of the family of ligand-dependent nuclear hormone receptors. One of these genes, RXRgamma, is expressed in highly restricted regions of the developing central nervous system (CNS), including the retina. Although previous studies have localized RXRgamma to developing cone photoreceptors in several species, its function in these cells is unknown...
متن کاملDifferential orientations of the DNA-binding domain and carboxy-terminal dimerization interface regulate binding site selection by nuclear receptor heterodimers.
Retinoic acid, thyroid hormone, and vitamin D receptors preferentially activate target genes through response elements that consist of direct repeat arrangements of a core recognition motif of consensus sequence AGGTCA. We present evidence that the preference for direct repeat elements arises from two fundamental differences from steroid hormone receptors. First, retinoic acid, thyroid hormone,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular endocrinology
دوره 12 9 شماره
صفحات -
تاریخ انتشار 1998